

prettyconf

Contents:

	What’s prettyconf
	Motivation

	Requirements

	Installation

	Usage
	Configuration files discovery

	Casts
	Buitin Casts

	Custom casts

	Useful third-parties casts

	Advanced Usage
	Customizing the configuration discovery

	Naming conventions for variables

	Writing your own loader

	Configuration Loaders
	Environment

	EnvFile

	IniFile

	CommandLine

	RecursiveSearch

	AwsParameterStore

	FAQ
	Why not use environment variables directly?

	Is prettyconf tied to Django or Flask?

	What is the difference between prettyconf and python-decouple?

	Why you created a library similar to python-decouple instead of use it?

	How does prettyconf compare to python-dotenv?

	Changelog
	2.2.1

	2.2.0

	2.1.0

	2.0.1

	2.0.0

	1.2.3

	1.2.2

	1.2.1

	1.2.0

	1.1.2

	1.1.1

	1.1.0

	1.0.1

	1.0.0

	0.4.1

	0.4.0

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.2

	0.2.0

	0.1.1

	0.1

Indices and tables

	Index

	Module Index

	Search Page

What’s prettyconf

Prettyconf is a framework agnostic python library created to make easy the
separation of configuration and code following the recomendations of 12
Factor [http://12factor.net/]’s topic about configs.

Motivation

Configuration is just another API of you app, aimed for users who will install
and run it, that allows them to preset the state of a program, without having
to interact with it, only through static files or environment variables.

It is an important aspect of the architecture of any system, yet it is
sometimes overlooked.

It is important to provide a clear separation of configuration and code. This
is because config varies substantially across deploys and executions, code
should not. The same code can be run inside a container or in a regular
machine, it can be executed in production or in testing environments.

Well designed applications allow different ways to be configured. A proper
settings-discoverability chain goes as follows:

	First CLI args are checked.

	Then Environment variables.

	Config files in different directories, that also imply some hierarchy. For
example: config files in /etc/myapp/settings.ini are applied
system-wide, while ~/.config/myapp/settings.ini take precedence and are
user-specific.

	Hardcoded constants.

This raises the need to consolidate configuration in a single source of truth
to avoid having config management scattered all over the codebase.

Requirements

	Python 2.7+ or 3.4+

Installation

First you need to install prettyconf library:

pip install prettyconf

The AwsParameterStore configuration loader depends on the boto3 package.
If you need to use it, install prettyconf with the optional feature aws:

pip install prettyconf[aws]

Usage

You can import and use prettyconf in your Python code:

from prettyconf import config

MY_CONFIG = config("PROJECT_MY_CONFIG")

If PROJECT_MY_CONFIG is not defined in an environment variable neither in a
.env (or *.cfg) file, prettyconf will raise a
UnknownConfiguration exception.

Warning

prettyconf will skip configuration files inside .zip,
.egg or wheel packages.

In these cases you could define a default configuration value:

MY_CONFIG = config("PROJECT_MY_CONFIG", default="default value")

You can also use the cast argument to convert a string value into
a specific value type:

DEBUG = config("DEBUG", default=False, cast=config.boolean)

The boolean cast converts strings values like On|Off, 1|0,
yes|no, true|False into Python boolean True or False.

See also

Find out more about other casts or how to write
your own at Casts.

Configuration files discovery

By default library will use the directory of the file where config() was
called as the start directory to look for configuration files. Consider the
following file structure:

project/
 settings.ini
 app/
 settings.py

If you call config() from project/app/settings.py the library will
start looking for configuration files at project/app until it finds
.env|*.ini|*.cfg files.

See also

This behavior is described more deeply on the
RecursiveSearch loader.
Loaders will help you customize how configuration
discovery works. Find out more at Customizing the configuration discovery.

Casts

Buitin Casts

	config.boolean - converts values like On|Off, 1|0, yes|no,
true|false, t|f into booleans.

	config.eval - safely evaluate strings with Python literals to Python
objects (alias to Python’s ast.literal_eval).

	config.list - converts comma separated strings into lists.

	config.tuple - converts comma separated strings into tuples.

	config.json - unserialize a string with JSON object into Python.

	config.option - get a return value based on specific options:

environments = {
 "production": ("spam", "eggs"),
 "local": ("spam", "eggs", "test"),
}

Will return a tuple with ("spam", "eggs") when
ENVIRONMENT is undefined or defined with `production`
and a tuple with ("spam", "eggs", "test") when
ENVIRONMENT is set with `local`.
MODULES = config("ENVIRONMENT",
 default="production",
 cast=Option(environment))

Custom casts

You can implement your own custom casting function:

def number_list(value):
 return [int(v) for v in value.split(";")]

NUMBERS = config("NUMBERS", default="1;2;3", cast=number_list)

Useful third-parties casts

Django is a popular python web framework that imposes some structure on the way
its settings are configured. Here are a few 3rd party casts that help you adapt
strings into that inner structures:

	dj-database-url [https://github.com/kennethreitz/dj-database-url] - Parses URLs like mysql://user:pass@server/db into
Django DATABASES configuration format.

	django-cache-url [https://github.com/ghickman/django-cache-url] - Parses URLs like memcached://server:port/prefix
into Django CACHES configuration format.

	dj-email-url [https://github.com/migonzalvar/dj-email-url] - Parses URLs like
smtp://user@domain.com:pass@smtp.example.com:465/?ssl=True with
parameters used in Django EMAIL_* configurations.

	dj-admins-setting [https://github.com/hernantz/dj-admins-setting] - Parses emails lists for the ADMINS configuration.

Advanced Usage

Most of the time you can use the prettyconf.config function to get your
settings and use the prettyconf’s standard behaviour. But some times
you need to change this behaviour.

To make this changes possible you can always create your own
Configuration() instance and change it’s default behaviour:

from prettyconf import Configuration

config = Configuration()

Warning

prettyconf will skip configuration files inside .zip,
.egg or wheel packages.

Customizing the configuration discovery

By default the library will use the envrionment and the directory of the file
where config() was called as the start directory to look for a .env
configuration file. Consider the following file structure:

project/
 app/
 .env
 config.ini
 settings.py

If you call config() from project/app/settings.py the library will
inspect the envrionment and then look for configuration files at
project/app.

You can change that behaviour, by customizing configuration loaders to look at
a different path when instantiating your Configuration():

Code example in project/app/settings.py
import os

from prettyconf import Configuration
from prettyconf.loaders import Environment, EnvFile

project_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..'))
env_file = f"{project_path}/.env"
config = Configuration(loaders=[Environment(), EnvFile(filename=env_file)])

The example above will start looking for configuration in the environment and
then in a .env file at project/ instead of project/app.

Because config is nothing but an already instantiated Configuration object,
you can also alter this loaders attribute in prettyconf.config before use it:

Code example in project/app/settings.py
import os

from prettyconf import config
from prettyconf.loaders import Environment, EnvFile

project_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..'))
env_file = f"{project_path}/.env"
config.loaders = [Environment(), EnvFile(filename=env_file)]

Read more about how loaders can be configured in the loaders section.

Naming conventions for variables

There happen to be some formating conventions for configuration paramenters
based on where they are set. For example, it is common to name environment
variables in uppercase:

$ DEBUG=yes OTHER_CONFIG=10 ./app.py

but if you were to set this config in an .ini file, it should probably be
in lower case:

[settings]
debug=yes
other_config=10

command line argments have yet another conventions:

$./app.py --debug=yes --another-config=10

Prettyconf let’s you follow these aesthetics patterns by setting a
var_format function when instantiating the loaders.

By default, the Environment is
instantiated with var_format=str.upper so that lookups play nice with the
env variables.

from prettyconf import Configuration
from prettyconf.loaders import Environment

config = Configuration(loaders=[Environment(var_format=str.upper)])
debug = config('debug', default=False, cast=config.boolean) # lookups for DEBUG=[yes|no]

Writing your own loader

If you need a custom loader, you should just extend the AbstractConfigurationLoader.

For example, say you want to write a Yaml loader. It is important to note
that by raising a KeyError exception from the loader, prettyconf knows
that it has to keep looking down the loaders chain for a specific config.

import yaml
from prettyconf.loaders import AbstractConfigurationLoader

class YamlFile(AbstractConfigurationLoader):
 def __init__(self, filename):
 self.filename = filename
 self.config = None

 def _parse(self):
 if self.config is not None:
 return
 with open(self.filename, 'r') as f:
 self.config = yaml.load(f)

 def __contains__(self, item):
 try:
 self._parse()
 except:
 return False

 return item in self.config

 def __getitem__(self, item):
 try:
 self._parse()
 except:
 # KeyError tells prettyconf to keep looking elsewhere!
 raise KeyError("{!r}".format(item))

 return self.config[item]

Then configure prettyconf to use it.

from prettyconf import config
config.loaders = [YamlFile('config.yml')]

Configuration Loaders

Loaders are in charge of loading configuration from various sources, like
.ini files or environment variables. Loaders are ment to chained, so that
prettyconf checks one by one for a given configuration variable.

Prettyconf comes with some loaders already included in prettyconf.loaders.

See also

Some loaders include a var_format callable argument, see
Naming conventions for variables to read more about it’s purpose.

Environment

The Environment loader gets configuration from os.environ. Since it
is a common pattern to write env variables in caps, the loader accepts a
var_format function to pre-format the variable name before the lookup
occurs. By default it is str.upper().

from prettyconf import config
from prettyconf.loaders import Environment

config.loaders = [Environment(var_format=str.upper)]
config('debug') # will look for a `DEBUG` variable

EnvFile

The EnvFile loader gets configuration from .env file. If the file
doesn’t exist, this loader will be skipped without raising any errors.

.env file
DEBUG=1

from prettyconf import config
from prettyconf.loaders import EnvFile

config.loaders = [EnvFile(file='.env', required=True, var_format=str.upper)]
config('debug') # will look for a `DEBUG` variable

Note

You might want to use dump-env [https://github.com/sobolevn/dump-env], a utility to create .env files.

IniFile

The IniFile loader gets configuration from .ini or .cfg files. If
the file doesn’t exist, this loader will be skipped without raising any errors.

CommandLine

This loader lets you extract configuration variables from parsed CLI arguments.
By default it works with argparse [https://docs.python.org/3/library/argparse.html] parsers.

from prettyconf import Configuration, NOT_SET
from prettyconf.loaders import CommandLine

import argparse

parser = argparse.ArgumentParser(description='Does something useful.')
parser.add_argument('--debug', '-d', dest='debug', default=NOT_SET, help='set debug mode')

config = Configuration(loaders=[CommandLine(parser=parser)])
print(config('debug', default=False, cast=config.boolean))

Something to notice here is the NOT_SET value. CLI parsers often force you
to put a default value so that they don’t fail. In that case, to play nice with
prettyconf, you must set one. But that would break the discoverability chain
that prettyconf encourages. So by setting this special default value, you will
allow prettyconf to keep the lookup going.

The get_args function converts the
argparse parser’s values to a dict that ignores
NOT_SET values.

RecursiveSearch

This loader tries to find .env or *.ini|*.cfg files and load them with
the EnvFile and
IniFile loaders respectively. It will
start at the starting_path directory to look for configuration files.

Warning

It is important to note that this loader uses the glob module internally to
discover .env and *.ini|*.cfg files. This could be problematic if
the project includes many files that are unrelated, like a pytest.ini
file along side with a settings.ini. An unexpected file could be found
and be considered as the configuration to use.

Consider the following file structure:

project/
 settings.ini
 app/
 settings.py

When instantiating your
RecursiveSearch, if you pass
/absolute/path/to/project/app/ as starting_path the loader will start
looking for configuration files at project/app.

Code example in project/app/settings.py
import os

from prettyconf import config
from prettyconf.loaders import RecursiveSearch

app_path = os.path.dirname(__file__)
config.loaders = [RecursiveSearch(starting_path=app_path)]

By default, the loader will try to look for configuration files until it finds
valid configuration files or it reaches root_path. The root_path is
set to the root directory / initialy.

Consider the following file structure:

/projects/
 any_settings.ini
 project/
 app/
 settings.py

You can change this behaviour by setting any parent directory of the
starting_path as the root_path when instantiating
RecursiveSearch:

Code example in project/app/settings.py
import os

from prettyconf import Configuration
from prettyconf.loaders import RecursiveSearch

app_path = os.path.dirname(__file__)
project_path = os.path.realpath(os.path.join(app_path, '..'))
rs = RecursiveSearch(starting_path=app_path, root_path=project_path)
config = Configuration(loaders=[rs])

The example above will start looking for files at project/app/ and will stop looking
for configuration files at project/, actually never looking at any_settings.ini
and no configuration being loaded at all.

The root_path must be a parent directory of starting_path:

Code example in project/app/settings.py
from prettyconf.loaders import RecursiveSearch

/baz is not parent of /foo/bar, so this raises an InvalidPath exception here
rs = RecursiveSearch(starting_path="/foo/bar", root_path="/baz")

AwsParameterStore

The AwsParameterStore loader gets configuration from the AWS Parameter Store,
part of AWS Systems Manager. The loader will be skipped if the parameter store is
unreachable (connectivity, unavailability, access permissions).
The loader respects parameter hierarchies, performing non-recursive discoveries.
The loader accepts AWS access secrets and region when instantiated, otherwise, it
will use system-wide defaults (if available).
The AWS parameter store supports three parameter types: String, StringList
and SecureString. All types are read as strings, however, decryption of
SecureStrings is not handled by the loader.

from prettyconf import config
from prettyconf.loaders import AwsParameterStore

config.loaders = [AwsParameterStore(path='/api')]
config('debug') # will look for a parameter named "/api/debug" in the store

FAQ

Why not use environment variables directly?

There is a common pattern to read configurations in environment variable that
look similar to the code below:

if os.environ.get("DEBUG", False):
 print(True)
else:
 print(False)

But this code have some issues:

	If envvar DEBUG=False this code will print True because
os.environ.get("DEBUG", False) will return an string ‘False’ instead
of a boolean False. And a non-empty string has a True boolean value.

	We can’t (dis|en)able debug with envvars DEBUG=yes|no, DEBUG=1|0,
DEBUG=True|False.

	If we want to use this configuration during development we need to define
this envvar all the time. We can’t define this setting in a configuration
file that will be used if DEBUG envvar is not defined.

Is prettyconf tied to Django [https://www.djangoproject.com/] or Flask [http://flask.pocoo.org/]?

No, prettyconf was designed to be framework agnostic, be it for the web or cli
applications.

What is the difference between prettyconf and python-decouple [https://github.com/henriquebastos/python-decouple]?

There is no subtantial difference between both libraries. prettyconf is
highly inspired in python-decouple and provides almost the same API.

The implementation of prettyconf is more extensible and flexible to make
behaviour configurations easier.

You can use any of them. Both are good libraries and provides a similar set of
features.

Why you created a library similar to python-decouple instead of use it?

I made some [https://github.com/henriquebastos/python-decouple/pull/4] contributions [https://github.com/henriquebastos/python-decouple/pull/5] for python-decouple [https://github.com/henriquebastos/python-decouple] previously, but I needed
to change its behaviour as described above and this change is backward
incompatible, so, it could break software that relies on the old behaviour.
Besides that it’s hard to make this change on python-decouple due to
the way it’s implemented.

See the lookup order of configurations below

	Lookup Order

	prettyconf

	python-decouple (<3.0)

	python-decouple (>=3.0)

	1

	ENVVAR

	.env

	ENVVAR

	2

	.env

	settings.ini

	.env

	3

	*.cfg or *.ini

	ENVVAR

	settings.ini

How does prettyconf compare to python-dotenv [https://github.com/theskumar/python-dotenv]?

python-dotenv [https://github.com/theskumar/python-dotenv] reads the key, value pair from .env file and adds them to
environment variable. It is good for some tools that simply proxy the env to
some other process, like docker-compose [https://docs.docker.com/compose/env-file/] or pipenv [https://pipenv.readthedocs.io/en/latest/advanced/#automatic-loading-of-env].

On the other hand, prettyconf does not populate the os.environ dictionary,
because it is designed to discover configuration from diferent sources, the
environment being just one of them.

Changelog

All notable changes to this project will be documented in this file.

This project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

2.2.1

	Fix JSON cast for already parsed default configuration

2.2.0

	Add new cast config.json for JSON configurations

2.1.0

	Add (optional) support for AWSParameterStore. To enable it install
prettyconf[aws] (thanks @ronaldotd)

	Replace nosetest -> pytest

	Implemented new .env parser with multiline support (thanks @jaysonsantos)

	Update and improve casts session documentation (thanks @hernantz)

2.0.1

	Hopeful quick and dirty fix of the discovery system (do not install version 2.0.0)

2.0.0

	Refactor strategy to find configuration files (thanks to @hernantz)

	Lots of improvements on documentation

	Dropped support for py2

	Dropped tox support

1.2.3

	Fix a blocker issue with config.eval cast and add a test to prevent regressions

	Add more informations about python-decouple vs. prettyconf at FAQ (Fixes #16 again)

1.2.2

	Remove testfixtures requirements (it’s broken with pypy)

1.2.1

	New cast type: config.eval (uses ast.literal_eval to cast python settings)

	3rd-party suggestion: dj-email-url parser in documentation

1.2.0

	New cast type: config.tuple (converts a comma-separated string in tuple)

1.1.2

	Ignore errors in make clean

1.1.1

	Fix a brown paper bug in the last release

	Force test running in make release target

	Add “pragma: no cover” in abstract methods

1.1.0

	Skip discovering files inside not-directory paths (eg. .egg, .zip
or wheel packages)

1.0.1

	Fix a issue that breaks .ini/.cfg loader with “broken” files

1.0.0

	First stable release! hooray!

	Make configuration load lazy to make possible change root_path and
starting_path in prettyconf.config

	Default root_path is “/” instead of $HOME (backward incompatible change)

	Add missing requirements in requirements.txt and make tox use it.

	Small PEP-8 and code formatting fixes

0.4.1

	Add MacOSX travis builds.

0.4.0

	Add root_path to stop looking indefinitely for configuration files until the OS root path

	Add advanced usage docs

	Include a simple (but working) tox configuration for py27 + py34 to the project

0.3.3

	Start a structure to make a better documentation with sphinx and publish it at Read the Docs

0.3.2

	Stop directories from being traversed up when valid configurations were found.

	Validates invalid unicode data on INI files (and skip them)

	Better Python3 support with use of ConfigParser.read_file

	Code cleanup

	More test cases for ConfigurationDiscovery added

0.3.1

	Fix a bad behaviour that make impossible to define a None default

0.3.0

	Make config.{cast} shortcuts easier to use. This change breaks backward compatibility.

0.2.2

	Fix an issue with .env parser that breaks with unquoted URL values

	Fix an issue with magic _get_path used by config discovery (thanks @bertonha)

0.2.0

	Add basic documentation

0.1.1

	Fix a small issue in README.txt formatting

0.1

	First version

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 prettyconf

 		
 What’s prettyconf

 		
 Motivation

 		
 Requirements

 		
 Installation

 		
 Usage

 		
 Configuration files discovery

 		
 Casts

 		
 Buitin Casts

 		
 Custom casts

 		
 Useful third-parties casts

 		
 Advanced Usage

 		
 Customizing the configuration discovery

 		
 Naming conventions for variables

 		
 Writing your own loader

 		
 Configuration Loaders

 		
 Environment

 		
 EnvFile

 		
 IniFile

 		
 CommandLine

 		
 RecursiveSearch

 		
 AwsParameterStore

 		
 FAQ

 		
 Why not use environment variables directly?

 		
 Is prettyconf tied to Django or Flask?

 		
 What is the difference between prettyconf and python-decouple?

 		
 Why you created a library similar to python-decouple instead of use it?

 		
 How does prettyconf compare to python-dotenv?

 		
 Changelog

 		
 2.2.1

 		
 2.2.0

 		
 2.1.0

 		
 2.0.1

 		
 2.0.0

 		
 1.2.3

 		
 1.2.2

 		
 1.2.1

 		
 1.2.0

 		
 1.1.2

 		
 1.1.1

 		
 1.1.0

 		
 1.0.1

 		
 1.0.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.2

 		
 0.2.0

 		
 0.1.1

 		
 0.1

_static/up.png

_static/up-pressed.png

